Showing 1 - 10 of 10
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10009767261
Persistent link: https://www.econbiz.de/10011341928
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10013079708
Persistent link: https://www.econbiz.de/10012619815
This study proposes a novel nonparametric estimation approach to solving asset-pricing models. Our method is robust to misspecification errors and it inherits a closed-form solution that facilitates ease of implementation. By transforming the Euler equation, our estimate is fully identified, and...
Persistent link: https://www.econbiz.de/10012849548
This textbook emphasizes the applications of statistics and probability to finance. Students are assumed to have had a prior course in statistics, but no background in finance or economics. The basics of probability and statistics are reviewed and more advanced topics in statistics, such as...
Persistent link: https://www.econbiz.de/10001805902
Persistent link: https://www.econbiz.de/10002029382
Persistent link: https://www.econbiz.de/10002242130
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10009631744
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10009631749