Showing 1 - 10 of 3,825
Quantile regression is in the focus of many estimation techniques and is an important tool in data analysis. When it comes to nonparametric specifications of the conditional quantile (or more generally tail) curve one faces, as in mean regression, a dimensionality problem. We propose a...
Persistent link: https://www.econbiz.de/10012966535
We suggest a semi-nonparametric estimator for the entire call price surface based on a tensor-product B-spline. To enforce no-arbitrage constraints in strike and calendar dimensions we establish sufficient no-arbitrage conditions on the control net of the tensor product (TP) B-spline. Since...
Persistent link: https://www.econbiz.de/10013037722
In this paper, we propose a new non-parametric density estimator derived from the theory of frames and Riesz bases. In particular, we propose the so-called bi-orthogonal density estimator based on the class of B-splines, and derive its theoretical properties including the asymptotically optimal...
Persistent link: https://www.econbiz.de/10012890658
Network models represent a useful tool to describe the complex set of financial relationships among heterogeneous firms in the system. In this paper, we propose a new semiparametric model for temporal multilayer causal networks with both intra- and inter-layer connectivity. A Bayesian model with...
Persistent link: https://www.econbiz.de/10013241977
A two-step estimation method of stochastic volatility models is proposed: In the first step, we estimate the (unobserved) instantaneous volatility process using the estimator of Kristensen (2010, Econometric Theory 26). In the second step, standard estimation methods for fully observed diffusion...
Persistent link: https://www.econbiz.de/10013136828
We propose the use of nonparametric Bernstein copulas as bivariate pair-copulas in high-dimensional vine models. The resulting smooth and nonparametric vine copulas completely obviate the error-prone need for choosing the pair-copulas from parametric copula families. By means of a simulation...
Persistent link: https://www.econbiz.de/10013100096
This paper proposes a three-step estimation strategy for dynamic conditional correlation models. In the first step, conditional variances for individual and aggregate series are estimated by means of QML equation by equation. In the second step, conditional covariances are estimated by means of...
Persistent link: https://www.econbiz.de/10012899132
We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a...
Persistent link: https://www.econbiz.de/10014380737
We develop and implement methods for determining whether relaxing sparsity constraints on portfolios improves the investment opportunity set for risk-averse investors. We formulate a new estimation procedure for sparse second-order stochastic spanning based on a greedy algorithm and Linear...
Persistent link: https://www.econbiz.de/10015194210
Empirical risk minimization is a standard principle for choosing algorithms in learning theory. In this paper we study the properties of empirical risk minimization for time series. The analysis is carried out in a general framework that covers different types of forecasting applications...
Persistent link: https://www.econbiz.de/10013216191