Showing 1 - 10 of 13
Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to...
Persistent link: https://www.econbiz.de/10009775959
Standard median filters preserve abrupt shifts (edges) and remove impulsive noise (outliers) from a constant signal but they deteriorate in trend periods. FIR median hybrid (FMH) filters are more flexible and also preserve shifts, but they are much more vulnerable to outliers. Application of...
Persistent link: https://www.econbiz.de/10010516929
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10011092158
Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to...
Persistent link: https://www.econbiz.de/10010316710
Tests for shift detection in locally-stationary autoregressive time series are constructed which resist contamination by a substantial amount of outliers. Tests based on a comparison of local medians standardized by a highly robust estimate of the variability show reliable performance in a broad...
Persistent link: https://www.econbiz.de/10010300669
Standard median filters preserve abrupt shifts (edges) and remove impulsive noise (outliers) from a constant signal but they deteriorate in trend periods. FIR median hybrid (FMH) filters are more flexible and also preserve shifts, but they are much more vulnerable to outliers. Application of...
Persistent link: https://www.econbiz.de/10010306275
Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to...
Persistent link: https://www.econbiz.de/10010955365
An essential problem in nonparametric smoothing of noisy data is a proper choice of the bandwidth or window width, which depends on a smoothing parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$k$$</EquationSource> </InlineEquation>. One way to choose <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$k$$</EquationSource> </InlineEquation> based on the data is leave-one-out-cross-validation. The selection of the cross-validation criterion is...</equationsource></inlineequation></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998431
Tests for shift detection in locally-stationary autoregressive time series are constructed which resist contamination by a substantial amount of outliers. Tests based on a comparison of local medians standardized by a highly robust estimate of the variability show reliable performance in a broad...
Persistent link: https://www.econbiz.de/10009216982
We propose weighted repeated median filters and smoothers for robust non-parametric regression in general and for robust signal extraction from time series in particular. The proposed methods allow to remove outlying sequences and to preserve discontinuities (shifts) in the underlying regression...
Persistent link: https://www.econbiz.de/10009219811