Showing 1 - 9 of 9
The present method allows to detect outlying observations in data which may be described by a deterministic function plus a stochastic component. This type of functional relationship often occurs in experimental data, in toxicological research, for instance. The Hampel identifier, an outlier...
Persistent link: https://www.econbiz.de/10010316448
Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data....
Persistent link: https://www.econbiz.de/10010316531
The aim of detecting outliers in a multivariate sample can be pursued in different ways. We investigate here the performance of several simultaneous multivariate outlier identification rules based on robust estimators of location and scale. It has been shown that the use of estimators with high...
Persistent link: https://www.econbiz.de/10010316578
The present method allows to detect outlying observations in data which may be described by a deterministic function plus a stochastic component. This type of functional relationship often occurs in experimental data, in toxicological research, for instance. The Hampel identifier, an outlier...
Persistent link: https://www.econbiz.de/10010955362
The aim of detecting outliers in a multivariate sample can be pursued in different ways. We investigate here the performance of several simultaneous multivariate outlier identification rules based on robust estimators of location and scale. It has been shown that the use of estimators with high...
Persistent link: https://www.econbiz.de/10010955369
Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data....
Persistent link: https://www.econbiz.de/10010955507
The aim of detecting outliers in a multivariate sample can be pursued in different ways. We investigate here the performance of several simultaneous multivariate outlier identification rules based on robust estimators of location and scale. It has been shown that the use of estimators with high...
Persistent link: https://www.econbiz.de/10009783550
The present method allows to detect outlying observations in data which may be described by a deterministic function plus a stochastic component. This type of functional relationship often occurs in experimental data, in toxicological research, for instance. The Hampel identifier, an outlier...
Persistent link: https://www.econbiz.de/10009776760
Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data....
Persistent link: https://www.econbiz.de/10010467714