Showing 1 - 10 of 2,949
Difference-in-differences (DID) is commonly used for causal inference in time-series cross-section data. It requires the assumption that the average outcomes of treated and control units would have followed parallel paths in the absence of treatment. In this paper, I propose a method that not...
Persistent link: https://www.econbiz.de/10014136941
We present a unifying identification strategy of dynamic average treatment effect parameters for staggered interventions when parallel trends are valid only after controlling for interactive fixed effects. This setting nests the usual parallel trends assumption, but allows treated units to have...
Persistent link: https://www.econbiz.de/10013556783
Persistent link: https://www.econbiz.de/10012303843
Persistent link: https://www.econbiz.de/10012483192
Persistent link: https://www.econbiz.de/10013448300
Persistent link: https://www.econbiz.de/10014531197
In this paper, we describe a computational implementation of the Synthetic difference-in-differences (SDID) estimator of Arkhangelsky et al. (2021) for Stata. Synthetic difference-in-differences can be used in a wide class of circumstances where treatment effects on some particular policy or...
Persistent link: https://www.econbiz.de/10013540490
John Snow and causal inference -- RStudio and R -- Regression and simulation -- Potential outcomes -- Causal graphs -- Experiments -- Matching -- Instrumental Variables -- Regression Discontinuity Design -- Panel Data and fixed effects -- Difference-in-Differences -- Integrating and generalizing...
Persistent link: https://www.econbiz.de/10014375030
We consider inference about coefficients on a small number of variables of interest in a linear panel data model with additive unobserved individual and time specific effects and a large number of additional time-varying confounding variables. We allow the number of these additional confounding...
Persistent link: https://www.econbiz.de/10011582013
We propose a method of retrospective counterfactual imputation in panel data settings with later-treated and always-treated units, but no never-treated units. We use the observed outcomes to impute the counterfactual outcomes of the later-treated using a matrix completion estimator. We propose a...
Persistent link: https://www.econbiz.de/10012581473