Showing 1 - 10 of 13
Based on a novel extension of classical Hoeffding-Fréchet bounds, we provide an upper VaR bound for joint risk portfolios with fixed marginal distributions and positive dependence information. The positive dependence information can be assumed to hold in the tails, in some central part, or on a...
Persistent link: https://www.econbiz.de/10012989098
We show that the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012) to compute distributional bounds can be used also to compute sharp lower and upper bounds on the expected value of a supermodular function of d random variables having fixed marginal distributions. Compared...
Persistent link: https://www.econbiz.de/10013049554
Persistent link: https://www.econbiz.de/10013262922
Persistent link: https://www.econbiz.de/10011772119
We derive lower and upper bounds for the Value-at-Risk of a portfolio of losses when the marginal distributions are known and independence among (some) subgroups of the marginal components is assumed. We provide several actuarial examples showing that the newly proposed bounds strongly improve...
Persistent link: https://www.econbiz.de/10013025590
We study issues of robustness in the context of Quantitative Risk Management and Optimization. We develop a general methodology for determining whether a given risk measurement related optimization problem is robust, which we call "robustness against optimization". The new notion is studied for...
Persistent link: https://www.econbiz.de/10013235019
Motivated by recent advances on elicitability of risk measures and practical considerations of risk optimization, we introduce the notions of Bayes pairs and Bayes risk measures. Bayes risk measures are the counterpart of elicitable risk measures, extensively studied in the recent literature....
Persistent link: https://www.econbiz.de/10013232680
Persistent link: https://www.econbiz.de/10012820643
Persistent link: https://www.econbiz.de/10009723474
Persistent link: https://www.econbiz.de/10011420503