Showing 1 - 10 of 76
We propose a general GARCH framework that allows the predict volatility using returns sampled at a higher frequency than the prediction horizon. We call the class of models High FrequencY Data-Based PRojectIon-Driven GARCH, or HYBRID-GARCH models, as the volatility dynamics are driven by what we...
Persistent link: https://www.econbiz.de/10013114867
Persistent link: https://www.econbiz.de/10001621177
"We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10002482290
Persistent link: https://www.econbiz.de/10002482316
Persistent link: https://www.econbiz.de/10002878247
Prior studies attribute analysts' forecast superiority over time-series forecasting models to their access to a large set of firm, industry, and macroeconomic information (an information advantage), which they use to update their forecasts on a daily, weekly or monthly basis (a timing...
Persistent link: https://www.econbiz.de/10012955869
We combine self-collected historical data from 1867 to 1907 with CRSP data from 1926 to 2012, to examine the risk and return over the past 140 years of one of the most popular mechanical trading strategies — momentum. We find that momentum has earned abnormally high risk-adjusted returns — a...
Persistent link: https://www.econbiz.de/10013040026
We combine self-collected historical data from 1867 to 1907 with CRSP data from 1926 to 2012, to examine the risk and return over the past 140 years of one of the most popular mechanical trading strategies — momentum. We find that momentum has earned abnormally high risk-adjusted returns — a...
Persistent link: https://www.econbiz.de/10013040544
This paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle...
Persistent link: https://www.econbiz.de/10013238628
Persistent link: https://www.econbiz.de/10013548748