Showing 1 - 10 of 57
In this paper we survey the most recent advances in supervised machine learning and highdimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The...
Persistent link: https://www.econbiz.de/10012390030
Persistent link: https://www.econbiz.de/10014287800
Persistent link: https://www.econbiz.de/10010385850
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially or geometrically). In other...
Persistent link: https://www.econbiz.de/10010505038
Persistent link: https://www.econbiz.de/10011598121
Persistent link: https://www.econbiz.de/10003721670
Persistent link: https://www.econbiz.de/10013447825
Persistent link: https://www.econbiz.de/10011807281
In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from...
Persistent link: https://www.econbiz.de/10011807392
The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the...
Persistent link: https://www.econbiz.de/10011807428