Showing 1 - 10 of 33
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically...
Persistent link: https://www.econbiz.de/10010296621
In the classical linear regression model the problem of testing for symmetry of the error distribution is considered. The test statistic is a functional of the difference between the two empirical distribution functions of the estimated residuals and their counterparts with opposite signs. The...
Persistent link: https://www.econbiz.de/10010306280
For the problem of testing symmetry of the error distribution in a nonparametric regression model we propose as a test statistic the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the...
Persistent link: https://www.econbiz.de/10010306258
In this paper a new method for monotone estimation of a regression function is proposed. The estimator is obtained by the combination of a density and a regression estimate and is appealing to users of conventional smoothing methods as kernel estimators, local polynomials, series estimators or...
Persistent link: https://www.econbiz.de/10010306273
The purpose of this paper is to propose a procedure for testing the equality of several regression curves fi in nonparametric regression models when the noise is inhomogeneous. This extends work of Dette and Neumeyer (2001) and it is shown that the new test is asymptotically uniformly more...
Persistent link: https://www.econbiz.de/10010296611
We describe how to test the null hypothesis that errors from two parametrically specified regression models have the same distribution versus a general alternative. First we obtain the asymptotic properties of teststatistics derived from the difference between the two residual-based empirical...
Persistent link: https://www.econbiz.de/10010296667
Recently, Dette, Neumeyer and Pilz (2005a) proposed a new monotone estimator for strictly increasing nonparametric regression functions and proved asymptotic normality. We explain two modifications of their method that can be used to obtain monotone versions of any nonparametric function...
Persistent link: https://www.econbiz.de/10010296696
Imagine we have two different samples and are interested in doing semi- or nonparametric regression analysis in each of them, possibly on the same econometric model. In this article we consider the problem of testing whether a specific covariate has different impacts on the regression curve in...
Persistent link: https://www.econbiz.de/10010306253
Abstract We consider linear models with scalar responses and covariates from a separable Hilbert space. The aim is to detect change points in the error distribution, based on sequential residual empirical distribution functions. Expansions for those estimated functions are more challenging in...
Persistent link: https://www.econbiz.de/10015410179
We consider linear models with scalar responses and covariates from a separable Hilbert space. The aim is to detect change points in the error distribution, based on sequential residual empirical distribution functions. Expansions for those estimated functions are more challenging in models with...
Persistent link: https://www.econbiz.de/10015407834