Showing 1 - 10 of 27
For many problems of statistical inference in regression modelling, the Fisher information matrix depends on certain nuisance parameters which are unknown and which enter the model nonlinearly. A common strategy to deal with this problem within the context of design is to construct maximin...
Persistent link: https://www.econbiz.de/10010306254
The problem of constructing standardized maximin D-optimal designs for weighted polynomial regression models is addressed. In particular it is shown that, by following the broad approach to the construction of maximin designs introduced recently by Dette, Haines and Imhof (2003), such designs...
Persistent link: https://www.econbiz.de/10010306268
We study locally D-optimal designs for some exponential models that are frequently used in the biological sciences. The model can be written as an algebraic sum of two or three exponential terms. We show that approximate locally D-optimal designs are supported at a minimal number of points and...
Persistent link: https://www.econbiz.de/10010296604
We determine optimal designs for some regression models which are frequently used for describing 3D shapes. These models are based on a Fourier expansion of a function defined on the unit sphere in terms of spherical harmonic basis functions. In particular it is demonstrated that the uniform...
Persistent link: https://www.econbiz.de/10010296608
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically...
Persistent link: https://www.econbiz.de/10010296621
In this paper we present a detailed numerical comparison of three monotone nonparametric kernel regression estimates, which isotonize a nonparametric curve estimator. The first estimate is the classical smoothed isotone estimate of Brunk (1958). The second method has recently been proposed by...
Persistent link: https://www.econbiz.de/10010296624
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10010296626
In this note we consider several goodness-of-fit tests for model specification in non- parametric regression models which are based on kernel methods. In order to circumvent the problem of choosing a bandwidth for the corresponding test statistic we propose to consider the statistics as...
Persistent link: https://www.econbiz.de/10010296632
We consider maximin and Bayesian D-optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available....
Persistent link: https://www.econbiz.de/10010296662
For the Weibull- and Richards-regression model robust designs are determined by maximizing a minimum of D- or D1-efficiencies, taken over a certain range of the non-linear parameters. It is demonstrated that the derived designs yield a satisfactory solution of the optimal design problem for this...
Persistent link: https://www.econbiz.de/10010296675