Showing 1 - 10 of 1,349
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity is addressed by the theory of robust statistics which builds upon parametric specification, but provides...
Persistent link: https://www.econbiz.de/10014113950
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity addressed by the theory of robust statistics which builds upon parametric specification, but provides methodology...
Persistent link: https://www.econbiz.de/10013154935
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10014047660
We propose various semiparametric estimators for nonlinear selection models, where slope and intercept can be separately identifed. When the selection equation satisfies a monotonic index restriction, we suggest a local polynomial estimator, using only observations for which the marginal...
Persistent link: https://www.econbiz.de/10012518068
High breakdown-point regression estimators protect against large errors and data contamination. We generalize the concept of trimming used by many of these robust estimators, such as the least trimmed squares and maximum trimmed likelihood, and propose a general trimmed estimator, which renders...
Persistent link: https://www.econbiz.de/10014066759
This paper studies a new class of robust regression estimators based on the two-step least weighted squares (2S-LWS) estimator which employs data-adaptive weights determined from the empirical distribution or quantile functions of regression residuals obtained from an initial robust fit. Just...
Persistent link: https://www.econbiz.de/10012728487
This paper introduces a new class of robust regression estimators. The proposed twostep least weighted squares (2S-LWS) estimator employs data-adaptive weights determined from the empirical distribution, quantile, or density functions of regression residuals obtained from an initial robust fit....
Persistent link: https://www.econbiz.de/10012731904
This note illustrates that the typical parameter, beta, in a censored regression model can be used to calculate an interesting marginal effect even when the errors in the model and the explanatory variables are not independent. The result is relevant for cross sectional models such at the ones...
Persistent link: https://www.econbiz.de/10013039544
We consider the estimation of a semiparametric location-scale model subject to endogenous selection, in the absence of an instrument or a large support regressor. Identification relies on the independence between the covariates and selection, for arbitrarily large values of the outcome. In this...
Persistent link: https://www.econbiz.de/10013051807