Showing 1 - 10 of 766
Non-homogeneous regression models are widely used to statistically post-process numerical ensemble weather prediction models. Such regression models are capable of forecasting full probability distributions and correct for ensemble errors in the mean and variance. To estimate the corresponding...
Persistent link: https://www.econbiz.de/10011762435
Non-homogeneous post-processing is often used to improve the predictive performance of probabilistic ensemble forecasts. A common quantity to develop, test, and demonstrate new methods is the near-surface air temperature frequently assumed to follow a Gaussian response distribution. However,...
Persistent link: https://www.econbiz.de/10011847486
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood....
Persistent link: https://www.econbiz.de/10014072593
We present a correction for sample selectively in the poisson regression model for count data. The model is similar to that devised by Heckman for the linear regression model. Estimation by a two step method is suggested using nonlinear least squares at the second step. The model described here...
Persistent link: https://www.econbiz.de/10012753381
Persistent link: https://www.econbiz.de/10015333710
Persistent link: https://www.econbiz.de/10013287799
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10014178700
The paper develops estimation and inference methods for econometric models with partial identification, focusing on models defined by moment inequalities and equalities. Main applications of this framework include analysis of game-theoretic models, regression with missing and mismeasured data,...
Persistent link: https://www.econbiz.de/10014026967
We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation...
Persistent link: https://www.econbiz.de/10010378876
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10009419329