Showing 1 - 10 of 17
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. Besides the inclusion of covariates, spatial effects are incorporated and modelled using a proper Gaussian conditional autoregressive prior based on Pettitt et al. (2002). Apart from...
Persistent link: https://www.econbiz.de/10002753399
In this paper we present a Gibbs sampler for a Poisson model including spatial effects. Frühwirth-Schnatter and Wagner (2004b) show that by data augmentation via the introduction of two sequences of latent variables a Poisson regression model can be transformed into a normal linear model. We...
Persistent link: https://www.econbiz.de/10002753420
Persistent link: https://www.econbiz.de/10003715380
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different...
Persistent link: https://www.econbiz.de/10003310097
Persistent link: https://www.econbiz.de/10001744451
We propose a new class of state space models for longitudinal discrete response data where the observation equation is specified in an additive form involving both deterministic and random linear predictors. These models allow us to explicitly address the effects of trend, seasonal or other...
Persistent link: https://www.econbiz.de/10003421296
In this paper we introduce two stochastic volatility models where the response variable takes on only finite many ordered values. Corresponding time series occur in high-frequency finance when the stocks are traded on a coarse grid. For parameter estimation we develop an efficient Grouped Move...
Persistent link: https://www.econbiz.de/10003422189
A new method for testing linear restrictions in linear regression models is suggested. It allows to validate the linear restriction, up to a specified approximation error and with a specified error probability. The test relies on asymptotic normality of the test statistic, and therefore...
Persistent link: https://www.econbiz.de/10003365446
This paper focuses on an extension of zero-inflated generalized Poisson (ZIGP) regression models for count data. We discuss generalized Poisson (GP) models where dispersion is modelled by an additional model parameter. Moreover, zero-inflated models in which overdispersion is assumed to be...
Persistent link: https://www.econbiz.de/10003365541
Count data often exhibit overdispersion and/or require an adjustment for zero outcomes with respect to a Poisson model. Zero-modified Poisson (ZMP) and zeromodified generalized Poisson (ZMGP) regression models are useful classes of models for such data. In the literature so far only score tests...
Persistent link: https://www.econbiz.de/10003310094