Showing 1 - 10 of 682
This paper describes a randomization-based inference procedure for the distribution or quantiles of potential outcomes for a binary treatment and instrument. The method imposes no parametric model for the treatment effect, and remains valid for small n, a weak instrument, or inference on tail...
Persistent link: https://www.econbiz.de/10013124827
This paper considers tests in an instrumental variables (IVs) regression model with IVs that may be weak. Tests that have near-optimal asymptotic power properties with Gaussian errors for weak and strong IVs have been determined in Andrews, Moreira, and Stock (2006a). In this paper, we seek...
Persistent link: https://www.econbiz.de/10014059052
This paper explores the sensitivity of plug-in based subset tests to instrument exclusion in linear IV regression. Recently, identification-robust statistics based on plug-in principle have been developed for testing hypotheses specified on subsets of the structural parameters. However, their...
Persistent link: https://www.econbiz.de/10013115089
The fact that weak instruments lead to spurious inference is now widely recognized. In this paper we ask whether spurious inference occurs more generally in weakly identified models. To distinguish between models where spurious inference will occur from those where it does not, we introduce the...
Persistent link: https://www.econbiz.de/10014073555
This article gives the asymptotic properties for nonparametric kernel based density and regression estimators when one of the variables, respectively regressors, had to be pre-estimated. Those variables are known as constructed variables or generatedregressors, and their impact on the -nal...
Persistent link: https://www.econbiz.de/10014224472
A wide variety of important distributional hypotheses can be assessed using the empirical quantile regression processes. In this paper, a very simple and practical resampling test is offered as an alternative to inference based on Khmaladzation, as developed in Koenker and Xiao (2002). This...
Persistent link: https://www.econbiz.de/10014119496
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://www.econbiz.de/10013160364
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error...
Persistent link: https://www.econbiz.de/10012773378
This paper studies a model widely used in the weak instruments literature and establishes admissibility of the weighted average power likelihood ratio tests recently derived by Andrews, Moreira, and Stock (2004). The class of tests covered by this admissibility result contains the Anderson and...
Persistent link: https://www.econbiz.de/10014026286
This paper develops a semi-parametric Bayesian regression model for estimating heterogeneous treatment effects from observational data. Standard nonlinear regression models, which may work quite well for prediction, can yield badly biased estimates of treatment effects when fit to data with...
Persistent link: https://www.econbiz.de/10012932596