Showing 1 - 10 of 24
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially or geometrically). In other...
Persistent link: https://www.econbiz.de/10010505038
In this paper we survey the most recent advances in supervised machine learning and highdimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The...
Persistent link: https://www.econbiz.de/10012390030
There has been considerable advance in understanding the properties of sparse regularization procedures in high-dimensional models. In time series context, it is mostly restricted to Gaussian autoregressions or mixing sequences. We study oracle properties of LASSO estimation of weakly sparse...
Persistent link: https://www.econbiz.de/10012390033
Persistent link: https://www.econbiz.de/10014287800
In this paper we introduce a linear programming estimator (LPE) for the slope parameter in a constrained linear regression model with a single regressor. The LPE is interesting because it can be superconsistent in the presence of an endogenous regressor and, hence, preferable to the ordinary...
Persistent link: https://www.econbiz.de/10013101987
Nonlinear regression models have been widely used in practice for a variety of time series and cross-section datasets. For purposes of analyzing univariate and multivariate time series data, in particular, Smooth Transition Regression (STR) models have been shown to be very useful for...
Persistent link: https://www.econbiz.de/10008657344
Persistent link: https://www.econbiz.de/10003893429
Persistent link: https://www.econbiz.de/10009374479
Persistent link: https://www.econbiz.de/10009374482
Persistent link: https://www.econbiz.de/10010225454