Showing 1 - 10 of 2,035
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10009153247
Identification in most sample selection models depends on the independence of the regressors and the error terms conditional on the selection probability. All quantile and mean functions are parallel in these models; this implies that quantile estimators cannot reveal any - per assumption...
Persistent link: https://www.econbiz.de/10009633861
The impact of measurement error in explanatory variables on quantile regression functions is investigated using a small variance approximation. The approximation shows how the error contaminated and error free quantile regression functions are related. A key factor is the distribution of the...
Persistent link: https://www.econbiz.de/10011644163
This paper proposes a methodology to incorporate bivariate models in numerical computations of counterfactual distributions. The proposal is to extend the works of Machado and Mata (2005) and Melly (2005) using the grid method to generate pairs of random variables. This contribution allows...
Persistent link: https://www.econbiz.de/10011411683
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10014178700
For estimating regression function we can use many proceedings. In this paper, we have chosen to apply scaling functions to the estimation of regression functions. When one knows many bivariate date with the values of two variables, in the goal to express a correlation between the two variables...
Persistent link: https://www.econbiz.de/10014051848
This paper studies fractional processes that may be perturbed by weakly dependent time series. The model for a perturbed fractional process has a components framework in which there may be components of both long and short memory. All commonly used estimates of the long memory parameter (such as...
Persistent link: https://www.econbiz.de/10014116703
A wide variety of important distributional hypotheses can be assessed using the empirical quantile regression processes. In this paper, a very simple and practical resampling test is offered as an alternative to inference based on Khmaladzation, as developed in Koenker and Xiao (2002). This...
Persistent link: https://www.econbiz.de/10014119496
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems.To...
Persistent link: https://www.econbiz.de/10012968298
The paper develops estimation and inference methods for econometric models with partial identification, focusing on models defined by moment inequalities and equalities. Main applications of this framework include analysis of game-theoretic models, regression with missing and mismeasured data,...
Persistent link: https://www.econbiz.de/10014026967