Showing 1 - 10 of 572
This paper develops a theory of high and low (extremal) quantile regression: the linear models, estimation, and inference. In particular, the models coherently combine the convenient, flexible linearity with the extreme-value-theoretic restrictions on tails and the general heteroscedasticity...
Persistent link: https://www.econbiz.de/10014129636
We study the problem of estimating the parameters of a linear median regression without any assumption on the shape of the error distribution -- including no condition on the existence of moments -- allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions,...
Persistent link: https://www.econbiz.de/10012962776
Bandwidth plays an important role in determining the performance of local linear estimators. In this paper, we propose a Bayesian approach to bandwidth selection for local linear estimation of time-varying coefficient time series models, where the errors are assumed to follow the Gaussian kernel...
Persistent link: https://www.econbiz.de/10013086871
We consider testing for correct specification of a nonparametric instrumental variable regression. In this ill-posed inverse problem setting, the test statistic is based on the empirical minimum distance criterion corresponding to the conditional moment restriction evaluated with a Tikhonov...
Persistent link: https://www.econbiz.de/10003550675
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these...
Persistent link: https://www.econbiz.de/10011382708
This paper proposes a methodology to incorporate bivariate models in numerical computations of counterfactual distributions. The proposal is to extend the works of Machado and Mata (2005) and Melly (2005) using the grid method to generate pairs of random variables. This contribution allows...
Persistent link: https://www.econbiz.de/10011411683
In this work, we introduce a smoothed influence function that constitute a theoretical tool for studying the outliers robustness properties of a large class of nonparametric estimators. With this tool, we first show the nonrobustness of the Nadaraya-Watson estimator of regression. Then we show...
Persistent link: https://www.econbiz.de/10009626684
Robust estimation techniques based on symmetric probability distributions are often substituted for OLS to obtain efficient regression parameters with thick-tail distributed data. The empirical, simulation and theoretical results in this paper show that with skewed distributed data, symmetric...
Persistent link: https://www.econbiz.de/10013004467
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these...
Persistent link: https://www.econbiz.de/10013131342
This paper will outline the functionality available in the CovRegpy package for actuarial practitioners, wealth managers, fund managers, and portfolio analysts written in Python 3.7. The major contributions of CovRegpy can be found in the CovRegpy_DCC.py, CovRegpy_IFF.py, CovRegpy_RCR.py,...
Persistent link: https://www.econbiz.de/10014253907