Showing 1 - 10 of 11
Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data....
Persistent link: https://www.econbiz.de/10010467714
Sliced inverse regression (SIR) is a clever technique for reducing the dimension of the predictor in regression problems, thus avoiding the curse of dimensionality. There exist many contributions on various aspects of the performance of SIR. Up to now, few attention has been paid to the problem...
Persistent link: https://www.econbiz.de/10003483090
Methods of dimension reduction are very helpful and almost a necessity if we want to analyze high-dimensional time series since otherwise modelling affords many parameters because of interactions at various time-lags. We use a dynamic version of Sliced Inverse Regression (SIR; Li (1991)), which...
Persistent link: https://www.econbiz.de/10009779502
We discuss the robust estimation of a linear trend if the noise follows an autoregressive process of first order. We find the ordinary repeated median to perform well except for negative correlations. In this case it can be improved by a Prais-Winsten transformation using a robust...
Persistent link: https://www.econbiz.de/10002569941
Persistent link: https://www.econbiz.de/10002364081
Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to...
Persistent link: https://www.econbiz.de/10009775959
Persistent link: https://www.econbiz.de/10003354953
Persistent link: https://www.econbiz.de/10003625893
We propose weighted repeated median filters and smoothers for robust non-parametric regression in general and for robust signal extraction from time series in particular. The proposed methods allow to remove outlying sequences and to preserve discontinuities (shifts) in the underlying regression...
Persistent link: https://www.econbiz.de/10003213340
Persistent link: https://www.econbiz.de/10003977730