Showing 1 - 10 of 45
Persistent link: https://www.econbiz.de/10009765843
This paper features an analysis of the relationship between the S&P 500 Index and the VIX using daily data obtained from the CBOE website and SIRCA (The Securities Industry Research Centre of the Asia Pacific). We explore the relationship between the S&P 500 daily return series and a similar...
Persistent link: https://www.econbiz.de/10011555743
We examine a kernel regression smoother for time series that takes account of the error correlation structure as proposed by Xiao et al. (2008). We show that this method continues to improve estimation in the case where the regressor is a unit root or near unit root process.
Persistent link: https://www.econbiz.de/10009734305
This paper introduces and analyses a setting with general heterogeneity in regression modelling. It shows that regression models with fixed or time-varying parameters can be estimated by OLS or time-varying OLS methods, respectively, for a very wide class of regressors and noises, not covered by...
Persistent link: https://www.econbiz.de/10015095127
This paper explores a semiparametric version of a time-varying regression, where a subset of the regressors have a fixed coefficient and the rest a time-varying one. We provide an estimation method and establish associated theoretical properties of the estimates and standard errors in extended...
Persistent link: https://www.econbiz.de/10015192982
Persistent link: https://www.econbiz.de/10014234183
Persistent link: https://www.econbiz.de/10015189850
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest α0, a parameter in front of the regressor of interest, such as the treatment variable...
Persistent link: https://www.econbiz.de/10010226493
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487
Persistent link: https://www.econbiz.de/10011451651