Showing 1 - 10 of 652
We provide a simple distribution regression estimator for treatment effects in the difference-in-differences (DiD) design. Our procedure is particularly useful when the treatment effect differs across the distribution of the outcome variable. Our proposed estimator easily incorporates covariates...
Persistent link: https://www.econbiz.de/10015052864
Persistent link: https://www.econbiz.de/10014428457
Centralized school assignment algorithms must distinguish between applicants with the same preferences and priorities. This is done with randomly assigned lottery numbers, nonlottery tie-breakers like test scores, or both. The New York City public high school match illustrates the latter, using...
Persistent link: https://www.econbiz.de/10011989205
Centralized school assignment algorithms must distinguish between applicants with the same preferences and priorities. This is done with randomly assigned lottery numbers, nonlottery tie-breakers like test scores, or both. The New York City public high school match illustrates the latter, using...
Persistent link: https://www.econbiz.de/10012870275
This paper provides a method to construct simultaneous confidence bands for quantile and quantile effect functions for possibly discrete or mixed discrete-continuous random variables. The construction is generic and does not depend on the nature of the underlying problem. It works in conjunction...
Persistent link: https://www.econbiz.de/10011538584
A key assumption in regression discontinuity analysis is that units cannot manipulate the value of their running variable in a way that guarantees or avoids assignment to the treatment. Standard identification arguments break down if this condition is violated. This paper shows that treatment...
Persistent link: https://www.econbiz.de/10011428251
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous. I show...
Persistent link: https://www.econbiz.de/10011387124
In this paper I demonstrate, both theoretically and empirically, that the interpretation of regression estimates of between-group differences in economic outcomes depends on the relative sizes of subpopulations under study. When the disadvantaged group is small, regression estimates are similar...
Persistent link: https://www.econbiz.de/10011958928
Applied work often studies the effect of a binary variable (“treatment”) using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012223869
Applied work often studies the effect of a binary variable ("treatment") using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012227296