Showing 1 - 10 of 643
When doing two-way fixed effects OLS estimations, both the variances and covariance of the fixed effects are biased. A formula for a bias correction is known, but in large datasets it involves inverses of impractically large matrices. We detail how to compute the bias correction in this case.
Persistent link: https://www.econbiz.de/10010418197
OLS is as efficient as GLS in the linear regression model with long-memory errors as the long-memory parameter approaches the boundary of the stationarity region, provided the model contains a constant term. This generalizes previous results of Samarov & Taqqu (Journal of Time Series Analysis 9...
Persistent link: https://www.econbiz.de/10009783566
This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of...
Persistent link: https://www.econbiz.de/10012894061
We demonstrate that regression models can be estimated by working independently in a row-wise fashion. We document a simple procedure which allows for a wide class of econometric estimators to be implemented cumulatively, where, in the limit, estimators can be produced without ever storing more...
Persistent link: https://www.econbiz.de/10014437200
This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of...
Persistent link: https://www.econbiz.de/10011972491
Log-linear and log-log regressions are one of the most used statistical models. However, handling zeros in the dependent and independent variable has remained obscure despite the prevalence of the situation. In this paper, we discuss how to deal with this issue. We show that using Pseudo-Poisson...
Persistent link: https://www.econbiz.de/10012847974
We study inference for threshold regression in the context of a large panel factor model with common stochastic trends. We develop a Least Squares estimator for the threshold level, deriving almost sure rates of convergence and proposing a novel, testing based, way of constructing confidence...
Persistent link: https://www.econbiz.de/10014082424
This paper deals with LASSO regression in high-dimensional sparse linear models with time series data. We propose heteroskedasticity and autocorrelation consistent (HAC) and heteroskedasticity and autocorrelation robust (HAR) estimates for the penalty loadings and evaluate the in-sample fitting...
Persistent link: https://www.econbiz.de/10014237947
We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation...
Persistent link: https://www.econbiz.de/10010378876
Often, variables are linked to each other via a network. When such a network structure is known, this knowledge can be incorporated into regularized regression settings via a network penalty term. However, when the type of interaction via the network is unknown (that is, whether connections are...
Persistent link: https://www.econbiz.de/10012174169