Showing 1 - 10 of 27
Persistent link: https://www.econbiz.de/10011550986
This paper considers the most important aspects of model uncertainty for spatial regression models, namely the appropriate spatial weight matrix to be employed and the appropriate explanatory variables. We focus on the spatial Durbin model (SDM) specification in this study that nests most models...
Persistent link: https://www.econbiz.de/10014137087
Persistent link: https://www.econbiz.de/10011669993
We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a...
Persistent link: https://www.econbiz.de/10013238045
Persistent link: https://www.econbiz.de/10014384414
Persistent link: https://www.econbiz.de/10015193830
Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable...
Persistent link: https://www.econbiz.de/10012031047
Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable...
Persistent link: https://www.econbiz.de/10012117683
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012405305
Persistent link: https://www.econbiz.de/10012588006