Showing 1 - 3 of 3
Bayesian regularization, a relatively new method for estimating model parameters, shrinks estimates towards the overall mean by shrinking the parameters. It has been proven to lower estimation and prediction variances from those of MLE for linear models, such as regression or GLM. It has a...
Persistent link: https://www.econbiz.de/10012851806
Parameter shrinkage applied optimally can always reduce error and projection variances from those of maximum likelihood estimation. Many variables that actuaries use are on numerical scales, like age or year, which require parameters at each point. Rather than shrinking these towards zero,...
Persistent link: https://www.econbiz.de/10012859790
Persistent link: https://www.econbiz.de/10013353175