Showing 1 - 10 of 28
Persistent link: https://www.econbiz.de/10001806809
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011524214
Persistent link: https://www.econbiz.de/10011920538
Persistent link: https://www.econbiz.de/10011738476
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011823308
"We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10002482290
A typical MIDAS regression involves estimating parameters via nonlinear least squares, unless U-MIDAS is applied - which involves OLS - the latter being appealing when the sampling frequency differences are small. In this paper we propose to use OLS estimation of the MIDAS regression slope and...
Persistent link: https://www.econbiz.de/10012983387
This paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle...
Persistent link: https://www.econbiz.de/10013238628
Persistent link: https://www.econbiz.de/10013548748
Persistent link: https://www.econbiz.de/10009758619