Showing 1 - 10 of 854
This paper will outline the functionality available in the CovRegpy package for actuarial practitioners, wealth managers, fund managers, and portfolio analysts written in Python 3.7. The major contributions of CovRegpy can be found in the CovRegpy_DCC.py, CovRegpy_IFF.py, CovRegpy_RCR.py,...
Persistent link: https://www.econbiz.de/10014253907
Confidence intervals in econometric time series regressions suffer from notorious coverage problems. This is especially true when the dependence in the data is noticeable and sample sizes are small to moderate, as is often the case in empirical studies. This paper suggests using the studentized...
Persistent link: https://www.econbiz.de/10014086930
This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input...
Persistent link: https://www.econbiz.de/10012956205
This paper develops particle-based methods for sequential inference in nonlinear models. Sequential inference is notoriously difficult in nonlinear state space models. To overcome this, we use auxiliary state variables to slice out nonlinearities where appropriate. This induces a Fixed-dimension...
Persistent link: https://www.econbiz.de/10013134153
Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise. By definition, white noise is normally, independently, and identically distributed with zero mean. This survey tries to answer the following questions: (i) How realistic are...
Persistent link: https://www.econbiz.de/10014056832
This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of...
Persistent link: https://www.econbiz.de/10012951789
A simple graphical approach to presenting results from nonlinear regression models is described. In the face of multiple covariates, 'partial mean' plots may be unattractive. The approach here is portable to a variety of settings and can be tailored to the specific application at hand. A simple...
Persistent link: https://www.econbiz.de/10013099782
A simple graphical approach to presenting results from nonlinear regression models is described. In the face of multiple covariates, 'partial mean' plots may be unattractive. The approach here is portable to a variety of settings and can be tailored to the specific application at hand. A simple...
Persistent link: https://www.econbiz.de/10009580558
This note considers a nonlinear regression model containing a 0-1 dichotomous regressor when it is subject to arbitrary measurement errors in the sample. The parameter of interest is the effect of the latent dichotomous variable on the dependent variable. Given that the measurement errors are...
Persistent link: https://www.econbiz.de/10012728845
This study proposes a Bayesian semiparametric binary response model using Markov chain Monte Carlo algorithms since this Bayesian algorithm works when the maximum likelihood estimation fails. Implementing graphic processing unit computing improves the computation time because of its efficiency...
Persistent link: https://www.econbiz.de/10013271063