Showing 1 - 10 of 44
Persistent link: https://www.econbiz.de/10001672851
Persistent link: https://www.econbiz.de/10002223333
We consider a linear panel event-study design in which unobserved confounds may be related both to the outcome and to the policy variable of interest. We provide sufficient conditions to identify the causal effect of the policy by exploiting covariates related to the policy only through the...
Persistent link: https://www.econbiz.de/10012920350
The paper develops estimation and inference methods for econometric models with partial identification, focusing on models defined by moment inequalities and equalities. Main applications of this framework include analysis of game-theoretic models, regression with missing and mismeasured data,...
Persistent link: https://www.econbiz.de/10014026967
Under minimal assumptions finite sample confidence bands for quantile regression models can be constructed. These confidence bands are based on the "conditional pivotal property" of estimating equations that quantile regression methods aim to solve and will provide valid finite sample inference...
Persistent link: https://www.econbiz.de/10014027304
This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of...
Persistent link: https://www.econbiz.de/10012894061
Persistent link: https://www.econbiz.de/10003892693
Persistent link: https://www.econbiz.de/10010337210
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010227452
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934