Showing 1 - 10 of 23
Recent crises in the financial industry have shown weaknesses in the modeling of Risk-Weighted Assets (RWAs). Relatively minor model changes may lead to substantial changes in the RWA numbers. Similar problems are encountered in the Value-at-Risk (VaR)-aggregation of risks. In this article, we...
Persistent link: https://www.econbiz.de/10010338097
Persistent link: https://www.econbiz.de/10009776377
Persistent link: https://www.econbiz.de/10003380013
Despite well-known shortcomings as a risk measure, Value-at-Risk (VaR) is still the industry and regulatory standard for the calculation of risk capital in banking and insurance. This paper is concerned with the numerical estimation of the VaR for a portfolio position as a function of different...
Persistent link: https://www.econbiz.de/10013045618
The problem of finding the best-possible lower bound on the distribution of a non-decreasing function of n dependent risks is solved when n=2 and a lower bound on the copula of the portfolio is provided. The problem gets much more complicated in arbitrary dimensions. When no information on the...
Persistent link: https://www.econbiz.de/10013049566
We show that the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012) to compute distributional bounds can be used also to compute sharp lower and upper bounds on the expected value of a supermodular function of d random variables having fixed marginal distributions. Compared...
Persistent link: https://www.econbiz.de/10013049554
Persistent link: https://www.econbiz.de/10010515943
Persistent link: https://www.econbiz.de/10011967212
Persistent link: https://www.econbiz.de/10011772119
The problem of establishing reliable estimates or bounds for the (T)VaR of a joint risk portfolio is a relevant subject in connection with the computation of total economic capital in the Basel regulatory framework for the finance sector as well as with the Solvency regulations for the insurance...
Persistent link: https://www.econbiz.de/10012932252