Showing 1 - 10 of 19
Persistent link: https://www.econbiz.de/10009155239
Tests for shift detection in locally-stationary autoregressive time series are constructed which resist contamination by a substantial amount of outliers. Tests based on a comparison of local medians standardized by a highly robust estimate of the variability show reliable performance in a broad...
Persistent link: https://www.econbiz.de/10003835696
Abrupt shifts in the level of a time series represent important information and should be preserved in statistical signal extraction. We investigate rules for detecting level shifts that are resistant to outliers and which work with only a short time delay. The properties of robustified versions...
Persistent link: https://www.econbiz.de/10003581856
We discuss the robust estimation of a linear trend if the noise follows an autoregressive process of first order. We find the ordinary repeated median to perform well except for negative correlations. In this case it can be improved by a Prais-Winsten transformation using a robust...
Persistent link: https://www.econbiz.de/10002569941
Persistent link: https://www.econbiz.de/10002363269
Persistent link: https://www.econbiz.de/10002364081
Robust versions of the exponential and Holt-Winters smoothing method for forecasting are presented. They are suitable for forecasting univariate time series in presence of outliers. The robust exponential and Holt-Winters smoothing methods are presented as a recursive updating scheme. Both the...
Persistent link: https://www.econbiz.de/10014220554
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013135866
Persistent link: https://www.econbiz.de/10008664197
The repeated median line estimator is a highly robust method for fitting a regression line to a set of n data points in the plane. In this paper, we consider the problem of updating the estimate after a point is removed from or added to the data set. This problem occurs e.g. in statistical...
Persistent link: https://www.econbiz.de/10009770914