Showing 1 - 10 of 1,286
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance - but still mean reverting - behavior is commonly found with nonparametric estimates of the fractional...
Persistent link: https://www.econbiz.de/10011382237
Persistent link: https://www.econbiz.de/10011649139
Persistent link: https://www.econbiz.de/10011799036
Persistent link: https://www.econbiz.de/10014393025
This article presents a robust augmented Kalman filter that extends the data-cleaning filter (Masreliez and Martin, 1977) to the general state space model featuring nonstationary and regression effects. The robust filter shrinks the observations towards their one-step-ahead prediction based on...
Persistent link: https://www.econbiz.de/10011377755
This article presents a robust augmented Kalman filter that extends the data – cleaning filter (Masreliez and Martin, 1977) to the general state space model featuring nonstationary and regression effects. The robust filter shrinks the observations towards their one-step-ahead prediction based...
Persistent link: https://www.econbiz.de/10012995885
The model parameters of linear state space models are typically estimated with maximum likelihood estimation, where the likelihood is computed analytically with the Kalman filter. Outliers can deteriorate the estimation. Therefore we propose an alternative estimation method. The Kalman filter is...
Persistent link: https://www.econbiz.de/10012943797
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance—but still mean reverting—behavior is commonly found with nonparametric estimates of the fractional...
Persistent link: https://www.econbiz.de/10012970590
I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared...
Persistent link: https://www.econbiz.de/10013098304
I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared...
Persistent link: https://www.econbiz.de/10009660446