Showing 1 - 10 of 12
I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared...
Persistent link: https://www.econbiz.de/10009660446
Persistent link: https://www.econbiz.de/10011893837
I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared...
Persistent link: https://www.econbiz.de/10013098304
We provide methods to robustly estimate the parameters of stationary ergodic short-memory time series models in the potential presence of additive low-frequency contamination. The types of contamination covered include level shifts (changes in mean) and monotone or smooth time trends, both of...
Persistent link: https://www.econbiz.de/10012987288
Persistent link: https://www.econbiz.de/10015066097
This paper presents new results on the identification of heteroskedastic structural vector autoregressive (HSVAR) models. Point identification of HSVAR models fails when some shifts in the variances of the structural shocks are suspected to be statistically indistinguishable from each other....
Persistent link: https://www.econbiz.de/10014556642
Uncertainty about the choice of identifying assumptions is common in causal studies, but is often ignored in empirical practice. This paper considers uncertainty over models that impose different identifying assumptions, which, in general, leads to a mix of point- and set-identified models. We...
Persistent link: https://www.econbiz.de/10011644088
Uncertainty about the choice of identifying assumptions is common in causal studies, but is often ignored in empirical practice. This paper considers uncertainty over models that impose different identifying assumptions, which, in general, leads to a mix of point- and set-identified models. We...
Persistent link: https://www.econbiz.de/10012241832
Persistent link: https://www.econbiz.de/10012609647
Uncertainty about the choice of identifying assumptions is common in causal studies, but is often ignored in empirical practice. This paper considers uncertainty over models that impose different identifying assumptions, which can lead to a mix of point‐ and set‐identified models. We propose...
Persistent link: https://www.econbiz.de/10012807735