Showing 1 - 10 of 15
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10014058202
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10003327173
Persistent link: https://www.econbiz.de/10014559897
Composite Marginal Likelihood (CML) has become a popular approach for estimating spatial probit models. However, for spatial autoregressive specifications the existing brute-force implementations are infeasible in large samples as they rely on inverting the high-dimensional precision matrix of...
Persistent link: https://www.econbiz.de/10012987287
Persistent link: https://www.econbiz.de/10003571472
Persistent link: https://www.econbiz.de/10011552253
Persistent link: https://www.econbiz.de/10012135106
Persistent link: https://www.econbiz.de/10001627138
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infi nite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10013118069