Showing 1 - 10 of 1,643
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the...
Persistent link: https://www.econbiz.de/10014179647
This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. The framework covers cases where the underlying likelihood or extremum criterion function is possibly non-concave, discontinuous, and of...
Persistent link: https://www.econbiz.de/10014052489
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
Markov chain Monte Carlo (MCMC) methods have an important role in solving high dimensionality stochastic problems characterized by computational complexity. Given their critical importance, there is need for network and security risk management research to relate the MCMC quantitative...
Persistent link: https://www.econbiz.de/10013029835
We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models, wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using three examples -- an artificial state-space model, the...
Persistent link: https://www.econbiz.de/10013074664
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011300365
This paper considers the finite sample distribution of the 2SLS estimator and derives bounds on its exact bias in the presence of weak and/or many instruments. We then contrast the behavior of the exact bias expressions and the asymptotic expansions currently popular in the literature, including...
Persistent link: https://www.econbiz.de/10011300710
This paper investigates the finite sample properties of the two-step estimators of dynamic factor models when unobservable common factors are estimated by the principal components methods in the first step. Effects of the number of individual series on the estimation of an auto-regressive model...
Persistent link: https://www.econbiz.de/10011723905
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011349180
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y lpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10011348357