Showing 1 - 10 of 1,471
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the...
Persistent link: https://www.econbiz.de/10014179647
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
Markov chain Monte Carlo (MCMC) methods have an important role in solving high dimensionality stochastic problems characterized by computational complexity. Given their critical importance, there is need for network and security risk management research to relate the MCMC quantitative...
Persistent link: https://www.econbiz.de/10013029835
This chapter presents a unified set of estimation methods for fitting a rich array of models describing dynamic relationships within a longitudinal data setting. The discussion surveys approaches for characterizing the micro dynamics of continuous dependent variables both over time and across...
Persistent link: https://www.econbiz.de/10014024953
A multiplier bootstrap procedure for construction of likelihood-based confidence sets is considered for finite samples and a possible model misspecification. Theoretical results justify the bootstrap consistency for a small or moderate sample size and allow to control the impact of the parameter...
Persistent link: https://www.econbiz.de/10010436527
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011300365
This paper considers the finite sample distribution of the 2SLS estimator and derives bounds on its exact bias in the presence of weak and/or many instruments. We then contrast the behavior of the exact bias expressions and the asymptotic expansions currently popular in the literature, including...
Persistent link: https://www.econbiz.de/10011300710
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10013024606
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly effcient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10013002559
In this paper, we derive a new algebraic property of two scales estimation in high frequency data, under which the effect of sampling times is cancelled to high order. This is a particular robustness property of the two scales construction. In general, irregular, asynchronous, or endogenous...
Persistent link: https://www.econbiz.de/10012914838