Showing 1 - 10 of 18
In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric...
Persistent link: https://www.econbiz.de/10010318739
We give an overview over smooth back tting type estimators in additive models. Moreover we illustrate their wide applicability in models closely related to additive models such as nonparametric regression with dependent error variables where the errors can be transformed to white noise by a...
Persistent link: https://www.econbiz.de/10010318754
Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and...
Persistent link: https://www.econbiz.de/10010318760
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10010281571
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10013118530
Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and...
Persistent link: https://www.econbiz.de/10013074263
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10009349196
In practice, multivariate dependencies of extreme risks are often only assessed in a pairwise way. We propose a novel test to detect when bivariate simplifications produce misleading results. This occurs when a significant portion of the multivariate dependence structure in the tails is of...
Persistent link: https://www.econbiz.de/10010246746
We study a general class of semiparametric estimators when the in nite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g. estimate nonlinear models with...
Persistent link: https://www.econbiz.de/10010402950
In practice, multivariate dependencies between extreme risks are often only assessed in a pairwise way. We propose a test to detect when tail dependence is truly high{dimensional and bivariate simplifications would produce misleading results. This occurs when a significant portion of the...
Persistent link: https://www.econbiz.de/10010402973