Showing 1 - 10 of 229
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10013110398
Persistent link: https://www.econbiz.de/10009501898
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009504597
Persistent link: https://www.econbiz.de/10010257367
In this note, we characterize the semiparametric efficiency bound for a class of semiparametric models in which the unknown nuisance functions are identified via nonparametric conditional moment restrictions with possibly non-nested or over-lapping conditioning sets, and the finite dimensional...
Persistent link: https://www.econbiz.de/10013099587
Persistent link: https://www.econbiz.de/10009674567
Persistent link: https://www.econbiz.de/10010497140
Persistent link: https://www.econbiz.de/10011502514
Persistent link: https://www.econbiz.de/10011312300
This paper considers semiparametric two-step GMM estimation and inference with weakly dependent data, where unknown nuisance functions are estimated via sieve extremum estimation in the first step. We show that although the asymptotic variance of the second-step GMM estimator may not have a...
Persistent link: https://www.econbiz.de/10013019447