Showing 1 - 10 of 130
In this chapter we discuss conceptually high dimensional sparse econometric models as well as estimation of these models using ℓ1-penalization and post-ℓ1-penalization methods. Focusing on linear and nonparametric regression frameworks, we discuss various econometric examples, present basic...
Persistent link: https://www.econbiz.de/10014178799
In this note, we propose the use of sparse methods (e.g. LASSO, Post-LASSO, p LASSO, and Post-p LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments in the canonical Gaussian case. The methods apply even when...
Persistent link: https://www.econbiz.de/10014178853
In this work we study the large sample properties of the posterior-based inference in the curved exponential family under increasing dimension. The curved structure arises from the imposition of various restrictions, such as moment restrictions, on the model, and plays a fundamental role in...
Persistent link: https://www.econbiz.de/10014052183
This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. The framework covers cases where the underlying likelihood or extremum criterion function is possibly non-concave, discontinuous, and of...
Persistent link: https://www.econbiz.de/10014052489
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest α0, a parameter in front of the regressor of interest, such as the treatment variable...
Persistent link: https://www.econbiz.de/10010226493
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487
Persistent link: https://www.econbiz.de/10010247741
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s n of them are...
Persistent link: https://www.econbiz.de/10009747946
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244