Showing 1 - 10 of 103
We argue that existing methods for the treatment of missing observations in observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and...
Persistent link: https://www.econbiz.de/10014116185
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time-varying with an...
Persistent link: https://www.econbiz.de/10012951597
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10012981759
This paper introduces a novel simulation-based filtering method for general state space models. It allows for the computation of time-varying conditional means, quantiles, and modes, but also for the prediction of latent variables in general. The method relies on generating artificial samples of...
Persistent link: https://www.econbiz.de/10014358032
This paper considers a stochastic volatility model featuring an asymmetric stable error distribution and a novel way of accounting for the leverage effect. We adopt simulation-based methods to address key challenges in parameter estimation, the filtering of time-varying volatility, and...
Persistent link: https://www.econbiz.de/10014433826
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the...
Persistent link: https://www.econbiz.de/10010364739
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10010390075
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891
We revisit Wintenberger (2013) on the continuous invertibility of the EGARCH(1,1) model. We note that the definition of continuous invertibility adopted in Wintenberger (2013) may not always be sufficient to deliver strong consistency of the QMLE. We also take the opportunity to provide other...
Persistent link: https://www.econbiz.de/10011401308