Showing 1 - 10 of 89
In this paper we describe the special role of moment theory for the construction of optimal designs in statistical regression models. A careful introduction in the problem of designing experiments for certain polynomial regression models is given, and it is demonstrated that the maximization of...
Persistent link: https://www.econbiz.de/10009775972
Persistent link: https://www.econbiz.de/10009776761
For the problem of percentile estimation of a quantal response curve, we determine multi-objective designs which are robust with respect to misspecifications of the model assumptions. We propose a maximin approach based on efficiencies and provide designs that are simultaneously efficient with...
Persistent link: https://www.econbiz.de/10010296603
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10010296626
In the common Fourier regression model we determine the optimal designs for estimating the coefficients corresponding to the lower frequencies. An analytical solution is provided which is found by an alternative characterization of c-optimal designs. Several examples are provided and the...
Persistent link: https://www.econbiz.de/10010296677
A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the...
Persistent link: https://www.econbiz.de/10010296683
Persistent link: https://www.econbiz.de/10010296685
We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take possible bias into account. We present a...
Persistent link: https://www.econbiz.de/10010298214
For many problems of statistical inference in regression modelling, the Fisher information matrix depends on certain nuisance parameters which are unknown and which enter the model nonlinearly. A common strategy to deal with this problem within the context of design is to construct maximin...
Persistent link: https://www.econbiz.de/10010306254
We consider the problem of finding D-optimal designs for estimating the coefficients in a weighted polynominal regression model with a certain efficiency function depending on two unknown parameters, which models he heteroscedastic error structure. This problem is tackled by adopting a Bayesian...
Persistent link: https://www.econbiz.de/10010306264