Showing 1 - 10 of 230
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice for estimating treatment effects. This paper proposes data-driven model selection and model averaging procedures that address this issue for the propensity score...
Persistent link: https://www.econbiz.de/10010209255
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717
Persistent link: https://www.econbiz.de/10011704807
We characterize the bias of propensity score based estimators of common average treatment effect parameters in the case of selection on unobservables. We then propose a new minimum biased estimator of the average treatment effect. We assess the finite sample performance of our estimator using...
Persistent link: https://www.econbiz.de/10010268598
Persistent link: https://www.econbiz.de/10010256214
Persistent link: https://www.econbiz.de/10009682440
Persistent link: https://www.econbiz.de/10011719929
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that...
Persistent link: https://www.econbiz.de/10011778870
Persistent link: https://www.econbiz.de/10012098947
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012165548