Showing 1 - 10 of 41
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
Persistent link: https://www.econbiz.de/10001683732
Persistent link: https://www.econbiz.de/10001984297
In this paper, we provide new empirical evidence on order submission activity and price impacts of limit orders at NASDAQ. Employing NASDAQ TotalView-ITCH data, we find that market participants dominantly submit limit orders with sizes equal to a round lot. Most limit orders are canceled almost...
Persistent link: https://www.econbiz.de/10013121274
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting...
Persistent link: https://www.econbiz.de/10013100899
We introduce a blocking and regularization approach to estimate high-dimensional covariances using high frequency data. Assets are first grouped according to liquidity. Using the multivariate realized kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a), the covariance...
Persistent link: https://www.econbiz.de/10013150590
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders' use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ,...
Persistent link: https://www.econbiz.de/10013110796
Persistent link: https://www.econbiz.de/10012819933
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders' use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ,...
Persistent link: https://www.econbiz.de/10009487319