Showing 1 - 10 of 16
We consider estimation of means of functions that are scaled by an unknown density, or equivalently, integrals of conditional expectations. The "ordered data" estimator we provide is root n consistent, asymptotically normal, and is numerically extremely simple, involving little more than...
Persistent link: https://www.econbiz.de/10004968822
We propose estimators of features of the distribution of an unobserved random variable W. What is observed is a sample of Y; V; X where a binary Y equals one when W exceeds a threshold V determined by experimental design, and X are covariates. Potential applications include bioassay and...
Persistent link: https://www.econbiz.de/10005053265
This paper provides numerically trivial estimators for short panels of either binary choices or of linear models that suffer from confounded, nonignorable sample selection. The estimators allow for fixed effects, endogenous regressors, lagged dependent variables, and heterokedastic errors with...
Persistent link: https://www.econbiz.de/10005053267
Assume individuals are treated if a latent variable, containing a continuous instrument, lies between two thresholds. We place no functional form restrictions on the latent errors. Here unconfoundedness does not hold and identification at infinity is not possible. Yet we still show nonparametric...
Persistent link: https://www.econbiz.de/10010680871
In this paper, we consider estimation of discrete response models exhibiting conditional heteroskedasticity of a multiplicative form, where the latent error term is assumed to be the product of an unknown scale function and a homoskedastic error term. It is first shown that for estimation of the...
Persistent link: https://www.econbiz.de/10009475499
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10010745070
A statistical problem that arises in several fields is that of estimating the features of an unknown distribution, which may be conditioned on covariates, using a sample of binomial observations on whether draws from this distribution exceed threshold levels set by experimental design....
Persistent link: https://www.econbiz.de/10010746131
The nonparametric censored regression model is y = max[c, m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown, but the fixed censoring point c is known. This paper provides a simple consistent estimator of the derivative of m(x) with respect to each...
Persistent link: https://www.econbiz.de/10005593534
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10005310378
Persistent link: https://www.econbiz.de/10011917184