Showing 1 - 10 of 16,167
Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy...
Persistent link: https://www.econbiz.de/10014094821
We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree models in terms of...
Persistent link: https://www.econbiz.de/10013296651
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
logarithmic returns. This method of analysing predictability of price formation processes using information theory follows closely …
Persistent link: https://www.econbiz.de/10011539782
Persistent link: https://www.econbiz.de/10000941825
Persistent link: https://www.econbiz.de/10000941826
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267
In this paper we design a simple trading strategy to exploit the hypothesized distinct informational content of the arithmetic and geometric mean. The rejection of cointegration between the two stock market indicators supports this conjecture. The profits generated by this cheaply replicable...
Persistent link: https://www.econbiz.de/10009696690
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10009696691
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10003636113