Showing 1 - 10 of 41
This article uses a sequentialized experimental design to select simulation input com- binations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer...
Persistent link: https://www.econbiz.de/10011092889
This paper proposes a novel method to select an experimental design for interpolation in random simulation, especially discrete event simulation.(Though the paper focuses on Kriging, this design approach may also apply to other types of metamodels such as linear regression models.)Assuming that...
Persistent link: https://www.econbiz.de/10011091412
Persistent link: https://www.econbiz.de/10011086865
Persistent link: https://www.econbiz.de/10011086945
Persistent link: https://www.econbiz.de/10011087208
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespecified target values. Besides the simulation outputs, the...
Persistent link: https://www.econbiz.de/10014212782
This paper uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10013141684
Persistent link: https://www.econbiz.de/10003987225
Persistent link: https://www.econbiz.de/10010424189