Showing 1 - 10 of 3,280
Markov chain Monte Carlo (MCMC) methods have an important role in solving high dimensionality stochastic problems characterized by computational complexity. Given their critical importance, there is need for network and security risk management research to relate the MCMC quantitative...
Persistent link: https://www.econbiz.de/10013029835
A Bayesian analysis is presented of a time series which is the sum of a stationary component with a smooth spectral density and a deterministic component consisting of a linear combination of a trend and periodic terms. The periodic terms may have known or unknown frequencies. The advantage of...
Persistent link: https://www.econbiz.de/10014029563
We propose a simulated maximum likelihood estimator (SMLE) for general stochastic dynamic models based on nonparametric kernel methods. The method requires that, while the actual likelihood function cannot be written down, we can still simulate observations from the model. From the simulated...
Persistent link: https://www.econbiz.de/10012734210
This paper provides an extensive Monte-Carlo comparison of severalcontemporary cointegration tests. Apart from the familiar Gaussian basedtests of Johansen, we also consider tests based on non-Gaussianquasi-likelihoods. Moreover, we compare the performance of these parametrictests with tests...
Persistent link: https://www.econbiz.de/10011300549
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y lpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10011348357
This paper develops an unbiased Monte Carlo approximation to the transition density of a jump-diffusion process with state-dependent drift, volatility, jump intensity, and jump magnitude. The approximation is used to construct a likelihood estimator of the parameters of a jump-diffusion observed...
Persistent link: https://www.econbiz.de/10012904646
This paper deals with optimal window width choice in non-parametric lag- or spectral window estimation of the spectral density of a stationary zero-mean process. Several approaches are reviewed: the cross-validation based methods described by Hurvich (1985), Beltrao & Bloomfield (1987) and...
Persistent link: https://www.econbiz.de/10009711652
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10014185810
We consider testing for correct specification of a nonparametric instrumental variable regression. In this ill-posed inverse problem setting, the test statistic is based on the empirical minimum distance criterion corresponding to the conditional moment restriction evaluated with a Tikhonov...
Persistent link: https://www.econbiz.de/10003550675
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10011386179