Showing 1 - 10 of 51
Persistent link: https://www.econbiz.de/10001448183
Persistent link: https://www.econbiz.de/10001422798
We consider two players facing identical discrete-time bandit problems with a safe and a risky arm. In any period, the risky arm yields either a success or a failure, and the first success reveals the risky arm to dominate the safe one. When payoffs are public information, the ensuing free-rider...
Persistent link: https://www.econbiz.de/10010333870
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10010333949
We analyze a two-player game of strategic experimentation with two-armed bandits. Each player has to decide in continuous time whether to use a safe arm with a known payoff or a risky arm whose likelihood of delivering payoffs is initially unknown. The quality of the risky arms is perfectly...
Persistent link: https://www.econbiz.de/10010427535
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10010427542
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable and show...
Persistent link: https://www.econbiz.de/10013140133
This paper studies strongly symmetric equilibria (SSE) in continuous-time games of strategic experimentation with Poisson bandits. SSE payoffs can be studied via two functional equations similar to the HJB equation used for Markov equilibria. This is valuable for three reasons. First, these...
Persistent link: https://www.econbiz.de/10013048976
We analyze a two-player game of strategic experimentation with two-armed bandits. Each player has to decide in continuous time whether to use a safe arm with a known payoff or a risky arm whose likelihood of delivering payoffs is initially unknown. The quality of the risky arms is perfectly...
Persistent link: https://www.econbiz.de/10003951567
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10003951715