Showing 1 - 1 of 1
Let (Ut,Vt) be a bivariate Lévy process, where Vt is a subordinator and Ut is a Lévy process formed by randomly weighting each jump of Vt by an independent random variable Xt having cdf F. We investigate the asymptotic distribution of the self-normalized Lévy process Ut/Vt at 0 and at ∞. We...
Persistent link: https://www.econbiz.de/10011065069