Showing 1 - 10 of 23
Persistent link: https://www.econbiz.de/10001722218
Persistent link: https://www.econbiz.de/10001726438
Persistent link: https://www.econbiz.de/10003092842
A Bayesian semi-parametric dynamic model combination is proposed in order to deal with a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing combination weight dependence between models as well as over time. It introduces an...
Persistent link: https://www.econbiz.de/10012971374
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012889464
We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven...
Persistent link: https://www.econbiz.de/10013098263
Persistent link: https://www.econbiz.de/10010254875
Persistent link: https://www.econbiz.de/10003754318
Persistent link: https://www.econbiz.de/10003569916
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of Aitchinson's geometry of the...
Persistent link: https://www.econbiz.de/10011295701