Showing 1 - 10 of 27
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While...
Persistent link: https://www.econbiz.de/10012955446
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t − 1 particle values into time t values. In the widely-used bootstrap particle filter this distribution is generated by the state- transition equation. While...
Persistent link: https://www.econbiz.de/10012980563
Persistent link: https://www.econbiz.de/10011566178
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter this distribution is generated by the state-transition equation. While...
Persistent link: https://www.econbiz.de/10011578495
Persistent link: https://www.econbiz.de/10011674409
Persistent link: https://www.econbiz.de/10012303367
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While...
Persistent link: https://www.econbiz.de/10012455233
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter this distribution is generated by the state-transition equation. While...
Persistent link: https://www.econbiz.de/10013210445
Persistent link: https://www.econbiz.de/10011440987
In likelihood-based estimation of linearized Dynamic Stochastic General Equilibrium (DSGE) models, the evaluation of the Kalman Filter dominates the running time of the entire algorithm. In this paper, we revisit a set of simple recursions known as the \"Chandrasekhar Recursions\" developed by...
Persistent link: https://www.econbiz.de/10014121106