Showing 1 - 10 of 924
The multivariate regular variation (MRV) is one of the most important tools in modelling multivariate heavy-tailed phenomena. This paper characterizes the MRV distribution through the upper tail dependence index of the copula associated with them. Along with Theorem 2.3 in Li and Sun (2009), our...
Persistent link: https://www.econbiz.de/10014184978
There is increasing demand for models of time-varying and non-Gaussian dependencies for multivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10012966304
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10012966319
An elliptical copula model is a distribution function whose copula is that of an elliptical distribution. The tail dependence function in such a bivariate model has a parametric representation with two parameters: a tail parameter and a correlation parameter. The correlation parameter can be...
Persistent link: https://www.econbiz.de/10013159425
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
consider a novel family of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both positive and … copulas are introduced, based on the estimation of their (univariate) generator. Moreover, the performance of the proposed …
Persistent link: https://www.econbiz.de/10010238359
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10009412716
For multivariate distributions in the domain of attraction of a max-stable distribution, the tail copula and the stable tail dependence function are equivalent ways to capture the dependence in the upper tail. The empirical versions of these functions are rank-based estimators whose inflated...
Persistent link: https://www.econbiz.de/10012842451
goodness-of-fit testing. Tests were performed comparing independent vs. Gaussian vs. ‘Gaussian Slug' copulas on weekly US and …
Persistent link: https://www.econbiz.de/10013009170
Tail dependence models for distributions attracted to a max-stable law are fitted using observations above a high threshold. To cope with spatial, high-dimensional data, a rank based M-estimator is proposed relying on bivariate margins only. A data-driven weight matrix is used to minimize the...
Persistent link: https://www.econbiz.de/10013057537