Showing 1 - 10 of 10
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the...
Persistent link: https://www.econbiz.de/10013147954
Persistent link: https://www.econbiz.de/10003920289
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the...
Persistent link: https://www.econbiz.de/10003896094
Smooth mixtures, i.e. mixture models with covariate-dependent mixing weights, are very useful flexible models for conditional densities. Previous work shows that using too simple mixture components for modeling heteroscedastic and/or heavy tailed data can give a poor fit, even with a large...
Persistent link: https://www.econbiz.de/10008696841
We model a regression density nonparametrically so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important...
Persistent link: https://www.econbiz.de/10012726170
Persistent link: https://www.econbiz.de/10012179532
We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important ways....
Persistent link: https://www.econbiz.de/10012746461
Smooth mixtures, i.e. mixture models with covariate-dependent mixing weights, are very useful flexible models for conditional densities. Previous work shows that using too simple mixture components for modeling heteroscedastic and/or heavy tailed data can give a poor fit, even with a large...
Persistent link: https://www.econbiz.de/10014188958
We construct a copula from the skew t distribution of Sahu, Dey & Branco (2003). This copula can capture asymmetric and extreme dependence between variables, and is one of the few copulas that can do so and still be used in high dimensions effectively. However, it is difficult to estimate the...
Persistent link: https://www.econbiz.de/10013038598
We construct a copula from the skew t distribution of Sahu, Dey & Branco (2003). This copula can capture asymmetric and extreme dependence between variables, and is one of the few copulas that can do so and still be used in high dimensions effectively. However, it is difficult to estimate the...
Persistent link: https://www.econbiz.de/10013145057